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Strange nonchaotic attractors in the quasiperiodically forced logistic map
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Different mechanisms for the creation of strange nonchaotic dynamics in the quasiperiodically forced logis-
tic map are studied. These routes to strange nonchaos are characterized through the behavior of the largest
nontrivial Lyapunov exponent, as well as through the characteristic distributions of finite-time Lyapunov
exponents. Strange nonchaotic attractors can be created at a saddle-node bifurcation when the dynamics shows
type-l intermittency; thisntermittenttransition, which is studied in detail, is characterized through scaling
exponents. Band-merging crises through which dynamics remains nonchaotic are also studied, and correspon-
dence is made with analogous behavior in the unforced logistic map. Robustness of these phenomena with
respect to additive noise is investigat¢81063-651X98)10302-1

PACS numbd(s): 05.45+b

[. INTRODUCTION absence of quasiperiodic forcing, the corresponding systems
show the by now standard scenarios for the route to chaotic
Of the diverse structures that are found in nonlinear dy-or aperiodic behavior, including gquasiperiodicity, period-
namical systems, strange nonchaotic attract®N¥As) are  doubling and tangent bifurcations, intermittency, crises, and
among the more exotic. These were described by Grebogjand-merging or reverse bifurcatiofi7]. There are paral-
etal.[1] in the context of quasiperiodically forced systems, jels to several of these in the different routes to SNAs.

and are characterized by having a geometrically strange
structure(usually a fractal, which is everywhere single val- @
ued but piecewise nondifferentiablith “nonchaotic” dy-
namics: the largest nontrivial Lyapunov expondnts nega-

tive, and nearby orbits do not diverge from each other
exponentially. Since they were describgld, a number of
characteristics of SNAs have been studied theoreti¢aHy

13] and experimentally14-16.

Strange nonchaotic dynamics usually occurs in the vicin-
ity of strange chaotic behavior and periodic or quasiperiodic
(nonstrange, nonchaoticbehavior. The different mecha-
nisms through which SNAs are created, either from regular
or from chaotic motion, and the mechanisms through which
they disappear, either into regular or chaotic motion—the
birth and death of strange nonchaotic attractors, so to
speak—is a topic of considerable current interest.

In this paper we address this question in the context of a
typical dynamical system with quasiperiodic forcing and dis-(2)
cuss a number of transitions in such systems. These include,
apart from the transition from quasiperiodic or chaotic mo-
tion to strange nonchaotic dynamics, transitions between dif-
ferent SNAs.

We study the quasiperiodically forced logistic map which
is given by the equations

Xn+1= o 1+ € OS2 hy) [Xn(1—Xy),
hni1=¢pt @ (modl),

wherexeR!, ¢ e St, w=(\/5—1)/2 is the irrational driving
frequency, ana represents the forcing amplitude. With qua-
siperiodic driving the periodic attractors of the logistic map
become quasiperiodic attractors, and following the standard
notation [5], we denote a torus attractor of periad in
RIxS! asn-T.

Four mechanisms or scenarios for the creation of SNAs in
guasiperiodically driven systems have been advanced. In the

©)

Heagy and Hamme[5] identified the birth of a SNA
with the collision between a period-doubled torus and its
unstable parent. This mechanism requires that a period-
doubling bifurcation occur, after which the stable torus
attractor gets progressively more “wrinkled” as the pa-
rameters in the system change, ix.¢)) becomes more
and more oscillatory. Following a collision with the un-
stable parent torus, at an analog of the attractor-merging
crisis that occurs in chaotic systerhg], the SNA is
born. A remains negative throughout the collision pro-
cess. This mechanism, which we denote by HH in the
remainder of this paper, has been seen both for a
period-2 torus as well as for the period-4 torus; the qua-
siperiodic forcing drives the system into chaos well be-
fore the infinite sequences of period doubling can occur.
The “fractalization” route for the creation of SNAs has
been described by Nishikawa and Kang¢Bg7]. A torus
gets increasingly wrinkled and transforms into a SNA
without any interaction with a nearby unstable periodic
orbit. This route to SNA(and eventually to chapsas
also been observed in higher-dimensional systgti

In the intermittency scenario for the formation of SNAs
[18], as a function of driving parameter a strange attrac-
tor disappears and is eventually replaced by a one-
frequency torus through an analog of the saddle-node
bifurcation. In the vicinity of this crisislike phenomenon
[2] the attractor is strange and nonchaotic. We have
shown that the dynamics at this transition shows scaling
behavior characteristic of type-l intermittengd3], and

the signature of the transition is an abrupt and character-
istic change in the variation of. The intermittent route

is a general one which can be found in other systems as
well [19].
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(4) Yalginkaya and La[8] identify the birth of SNAs with a 1.0
blowout bifurcation[9], when a torus loses transverse
stability. The Lyapunov exponent also has a characteris-

tic dependence on parameter in this case. ‘06
8’ »

03

SNAs can be quantitatively characterized by a variety of
methods, including the estimation of the Lyapunov expo-
nents and the fractal dimensi¢h,3,20, spectral properties 0.2
[3,7], and examination of the time serigtl,21]. The geo- |
metric strangeness of the attractor can be measured throug! 0.0 L=
indices such as the phase-sensitivity expon&d}, while the 2
chaoticity properties can be studied by examining the finite-
time Lyapunov exponentd0,1§.

A number of transitions in this system are investigated
wherein three of the above mechanisms for the creation of
SNAs are known to be operatiblowout bifurcations can-
not occuy, notably the processes whereby SNAs are created
from torus (T) attractors, 0.8 E b)

04

---nT<n band SNAs----, 2 . 0.6
E/XIU- C

22" band SNAs- -, 3) 04t 1

3T

or others, such as from SNA to chaotic attracto®) (or 0.2t

from ak-band SNA to &/2-band SNA, 6T

--n band SNAs>n band Ces--- | @ 383 36835 384 30845 .65

.-k band SNAs-k/2 band SNAs-k/2 bandCe--- . @

5
FIG. 1. (a) Phase diagram for the forced logistic mégthe-
The latter class of bifurcatior(®or k a power of 2 is studied  matig. The rescaled parametet is defined as’ =e/(4/a—1). T
here through analysis of the Lyapunov exponents and theandC correspond to torus and chaotic attractors. The shaded region
distributions. We also explore the effect of additive noise. along the boundary of and C corresponds to SNAmarkedsS).

This paper is organized as follows. In Sec. I, we describelhe boundaries separating the different regions are convoluted, and
the “phase diagram” for the forced logistic map: the regionsregions of SNA and chaotic attractors are interwoven in a compli-
corresponding to the different dynamical behavior that obtairfated manner. The dashed curve marks the locus of the “super-
are delineated as a function of parameters. This phase digtable” orbit(see the tejt The region of periodic attractors can be
gram is canonical for dynamical systems such as (&j. further demarcated into p.erlod-l, -2, gndl -4 tori a.s shéliin 2T, .
namely, unimodal maps that are parametrically driven, an@nd 47). W denotes the window of periodic behavior corresponding
generalizes the usual bifurcation diagram that is obtained iff {he period-3 orbit of the logistic map. This is shown enlarged in
the absence of forcing. Transitions to SNAs and the charad-'9 Ub). Inte_rm|ttent SNAs are found on the edge of _ﬂ)greglon
teristic behavior of the Lyapunov exponents are discussed iWarked |, while the left boundary &, has only fractalized SNAS.

. - Along the boundary ofZ,, both fractalized and HH SNAs can be
Sec. lll, where we also discuss other transformations that arg : - . _
undergone by SNAs, such as the analog of band mergin ound. (b) An enlargement of the window indicated in(a). This

) - . . . 'mall window shows periodic tori of period 3,6.. and their
The creation of SNAs is often accompanied by INterMIttentgy As that are created either through the Heagy-Hammel process or

dynami_cs, and this can be quantitati_v_ely described in termﬁactalization. As may be expected, other similar windows can be
of scaling exponents at these transitions. These results aggen ypon further enlargement.

also given in Sec. lll, where we discuss, in addition, the
effects of additive noise. This is followed by a summary in o . ] )
Sec. IV. Os¢=<1. For €#0, it is clear that motion will remain

bounded in this region so long aa[l+ e cos(2re,)]
€[0,4]. Thus for anya<4, the largest value of allowed is
4/a—1. We therefore redefine the driving parameter as
The quasiperiodically forced logistic mdp] is particu- €' =e/(4/a—1) and study the system forQe' <1.
larly convenient for study since the phenomenology is Figure 1 is a phase diagrah8] of the system as a func-
smoothly related to that of the logistic map in the limit of tion of @ ande’. (The regimea<2 is featureless and unin-
e—0. Sincex and ¢ are uncoupled in this limit, the period- teresting. The different possible dynamical behavior—
k orbits of the logistic map are converted irkefrequency  periodic, strange nonchaotic, and chaotic attractors,
tori, and the chaotic attractors in the logistic map appear asorresponding to the symbolB, S and C in the phase
chaotic band attractors of the two-dimensional map, (. diagram—are characterized through the largest nonzero
The region of interest in the phase space isx3<1, Lyapunov exponent,

Il. FORCED LOGISTIC MAP: PHASE DIAGRAM
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§ Note the highly oscillatory structure indicative of several transitions
0.4 in the system.
0.2

; : occurs. For fixect’, SNAs are created through fractalization
0 . : : ' in an interval ina as indicated in the phase diagram.
o0 01 0z 03 04 05 06 07 08 09 1 Along the right edge o€,, SNAs are born througimter-
b mittency Consider a superstable one-torus. In the regime
0.59<¢€’'<1, asa is decreased, holding’ fixed, a saddle-
FIG. 2. Typical chaotic attractors in the two regicfas C,, for ~ node bifurcation takes place and the torus becomes a SNA,
a=3.6,€'=0.5, and(b) C, ata=3, ' =1. eventually becoming a chaotic attractor. This process occurs
over a somewhat narrow range of parameters as compared to
LN the other routes discussed in Sec. I.
— i = _ oy Along the left edge ofC; SNAs are created either via the
A= lim N-Zl Inja[1+ € cog2mé)}(1-2x)[.  (§) HH mechanism, or through fractalization. The phenomenon
of truncation or interruption of the period-doubling cascade
resulting from the quasiperiodic driving was noted by
We calculateA typically from 10° iterations of the map Kaneko[22], who also showed that there was a power-law
(after removing transients for 2Gterationg which is suffi-  scaling between the number of doublings and the driving
cient to converge the results to within 1t To obtain Fig. amplitude. The requirement, in the Heagy-Hammel mecha-
1, A has been calculated in a 160100 grid, and the bound- nism, that a period-doubled torus collide with its unstable
aries of the chaotic regions are determined from Ae0  parent, is a stringent one, and this is achieved only for se-
contour. lected parameter intervals. Fractalization is also a likely
The main interesting feature of this phase diagram is th&ause for the interruption of period doublif2g]. The actual
presence of two separate chaotic regin@s,and C,. The  mechanism through which a SNA is created is easily identi-
C; region is the continuation of the chaotic regime in thefied from the morphology of the attractorketorus gives rise
logistic map(this appears, foe=0 at the end of the period- to ak/2-band SNA in the Heagy-Hammel mechanism, and to
doubling cascade, a¥=3.5699..). The superstable orbit ak-band SNA through fractalization. At low forcing ampli-
which exists ate=0,a=2 continues(slightly distorted for  tude the fractalization is found to be dominant while the HH
nonzeroe’ along the locuse’ ~2(1—2/a)/5(4/a—1); this  mechanism is more common at higher forcing. In particular,
line [the dotted curve in Fig.(3)] separate€,; andC,. The  we do not find any fractalization event aboge~0.7.
latter chaotic region is one of low nonlinearity and large- The regions of SNA are quite complicated. The bound-
amplitude forcing. The two types of chaotic attractors thataries between chaotic attractors and SNAs are convoluted,
occur in these two regions are qualitatively quite different—with regions of torus attractors interspersed among the re-
see Figs. @) and 2b). gions of SNAs. Thus there are several transformations that
SNAs are found in the vicinity of the boundaries of the the attractors of this system undergo apart from the birth and
chaotic regions, where\<0. The different mechanisms death mechanisms, namely, the transition from torus to SNA
through which they are formed in different regions are dis-or SNA to chaos. Indeed, along a line of constardr con-
cussed below. stante’, A is highly nonmonotonic and reveals a number of
Along the left edge of the regio@,, for 0.59<¢’'<1, the  bifurcations. An example is shown in Fig. 3, for constant
route to SNA is through fractalization. This region lies to the e=0.05. Clearly, there are transitions frofr~ SNA— chaos
left of the curve of “superstable one-torus” poinfthe = —SNA—chaa... ,finally terminating in theC; chaotic
dashed line in Fig. @], namely, well before torus doubling region.

N— o
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Within the SNA region, there are transitions from . . . . . .
2"-band SNAs to 2 !-band SNAs. At these transitions  -g.i11 | i _
again there are distinctive and unusual signatures in the dt (a) 5# ﬁ}}% |
pendence of\, as well as in the distribution of finite-time ﬁ% { ﬁ%

2

Lyapunov exponents. This is discussed in the following sec 0113 #
tion. "

Compared to the system at0, for nonzeroe it is usu- A -0.115 | ¢ §§§§ -
ally possible to observe regular motion only anT with i # i
n=1,2,3,4,6,8,16. Highern-frequency tori are surely 5553382
present, but the regions where they occur are extremely na ouTE @mﬁ@m 7
row. The period-3 window of the logistic map extends as & g™ .
narrow region of stability wherein one can locatd 36-T, -0.119 ' . ' L ' L
and the associated SNAs, which are formed through th -15
same general mechanisms as outlined in Sec. I. An enlarg
ment of this region of the phase diagrdmarked byW in 45

Fig. 1(a@)] is shown in Fig. 1b). The three-band and six-band
SNAs that occur appear to be formed through the fractaliza
tion or Heagy-Hammel route.

This qualitative picture appears to be valid for all quasi-
periodically forced unimodal maps. We have studied the ad 30F
ditively forced logistic map, as well as the forced sine map,
and found a similar phase diagram. For higher-dimensione
systems, the picture gets somewhat more complicated, bi
the essential qualitative features carry over, much in the
same manner as the bifurcation diagram for one-dimensioni 1.5F
(1D) maps generalizes for higher-dimensional dissipative
chaotic systems. This system is also not very sensitive to th
numerical value of the irrational driving frequenay quali-
tatively similar phase diagrams have been obtained for othe
w’'S. 0 L 1 )

-2 -1 0 1 2

ox10™

.5
(a-a )x10
Ill. RESULTS AND DISCUSSION ¢
In this section we study the variation of the dynamics FIG. 4. The transition from a peri_od-2 torus to qne-band SNA
through several transitions in the system as the parametersthrough the Heagy-Hammel mechanism along the &he 0.3 and
and € are varied. In addition to the Lyapunov expon@nt at aHH:3487 793... (a) Behavior of A through the transition,

itself, we also examine thi-step Lyapunov exponents,, ~ and(b) the variance.
namely, .
A. From tori to SNAs
N 1. The Heagy-Hammel mechanism
)\NZEE In|a[1+ e cog2mw ) ](1—2%)], 7 In the HH mechanism5], a period-2 torus attractor gets
=1

wrinkled and upon collision with the parent unstable period-
2" 1 torus, a 2~ 1-band SNA is formed. This phenomenon
) ) S is similar (in some sengeto the band-merging crisis that
their variances, and the distribution occurs in unforced systems, where the Lyapunov exponent is
known to have a discontinuous slop23]. In contrast, in
Ref. [5] the transition to SNA appeared to be smooth as a

P(N,\)d\ = (probability thathy lies between) and function of the parametdsee Figs. 2 and 10 ifb]).

A+d)). (8) We examine this behavior in some detail in Fida)4
where for €'=0.3 the crisis takes place atryy
=3.487 793... . When examined in a sufficiently small

This is of great relevance when studying the stability of sysheighborhood ok, the transition is clearly revealed by:
tems where a small change in control parameter gives rise ton the torus,A varies smoothly but in the SNA phase the
drastic change in dynamical behavior. In our calculatigns, variation is rather irregular and the crossover between these
and its variance are typically computed from a sample of 5awo behaviors is abrupt. It is also possible to identify the
estimations of step lengtN=1C". transition point from the examination of the varianceAn

The SNA—chaos route, which has been studied extenshown in Fig. 4b): in the torus regiong< apy, the fluctua-
sively and where it is known that the Lyapunov exponenttions in A are small, while fore> ay,, the variance is large
varies linearly through the transitigi.2], will not be con-  and depends irregularly on the function of the control param-
sidered here. eter. Unlike the case of band-merging or widening crj2&$
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0.005 . . , . tively. On the intermittent SNA, most points remain near the

@ ﬂﬁi parent torus, with sporadic large deviations. On fractalized
0F H@E 7 SNAs points on the attractor stay close to the parent fractal
0005 | ﬁhﬁ | tqrug (Fig. 1.of. Ref. [7]),' While'on HH SNAs, points are
' f distributed within the entire region enclosed by the wrinkled
A 001k iﬁf | bounding tori(see Fig. 1 of Ref.5]). The other characteristic
5 behavior can be extracted from Figdp where we plot the
0.015 | gﬂ@iﬂ § variance: this changes abruptly at the transition, where a
& saddle-node bifurcation occurs showing the characteristic
-0.02 - mf 7 signature of the intermittency route to SNAs.
-0.025 = ‘ : : : 4. Finite-time Lyapunov exponents

As is well known, while A is negative on a SNA, for
short times, the local Lyapunov exponent can be positive.
One of the characteristics of the SNAs born through different
mechanisms is the difference in the distribution of finite-time
exponents, namely?(N,\). In the limit of largeN, it is
clear that this distribution will collapse to & function,
limy_«P(N,A\)— (A —N\). The deviations from—and the
approach to—the limit can be very different for SNAs cre-
ated through different mechanisms.

Shown in Figs. 7@-7(c) are the distributions for
P(50\) across the three transitions discussed above, namely
on the tori and corresponding SNAs. A common feature of
all three cases is thd@(N,\) is strongly peaked about
when the attractor is a torus, but on the SNA, the distribution
picks up a tail which extends into the>0 region. This tail
-0.50 0.25 0 0.25 0.50 directly correlates with the enhanced fluctuation Anon
SNAs[see Fig. 4b), 5(b), or 6(d)]. On the fractalized SNA,
the distribution shifts continuously to largdr, but the shape
remains the same fo#(«, and a)«,, while on the HH or
intermittent SNA, the actual shapes of the distribution on the
torus and the SNA are very different.

One remarkable feature of intermittent SNAs is that the
positive tail in the distribution decays very slowly: even for

there is no distinctive signature in the variation of theN as large as 19 it does not completely disappedi8]. In

Lyapunov exponent itseliexcept for a certain irregularity in order to quantify this, we define the fraction of positive local
the SNA phase Lyapunov exponents as

(oc-ccc)xl()'2

FIG. 5. The transition from a period-1 torus to one-band SNA
via the fractalization route along the ling’=1 and at
ap=2.6526... .(a) Behavior of A through the transition, antb)
the variance.

2. The fractalization mechanism F.(N)= fo(N,)\)d)\, (9)
0

During fractalization, a perio#- torus attractor gets
wrinkled and eventually forms k-band SNA[12]. There is  and similarly, the first moment, namely, a local Kolmogorov-
no apparent interaction with unstable periodic orbits in con-Sinai (KS) entropy,
trast to the HH case, and there are no analogs of any crisis-
like beh(_;lvior. The variqtion_ of th& and its varianc_e at such K(N)= fw)\P(N,)\)dA. (10)
a transition are shown in Figs(& and 3b), respectively, as 0
a changes througla=2.65%6 ... ate'=1. The behavior ) _ -
of variance in Fig. B) is similar to that of the HH cadéig. ~ Clearly, limy_...F(N)—0 and lim_.K(N)—0. Empiri-
4(b)], except in the magnitude of the fluctuations. These figcally we have found that on the intermittent SNA, these
ures also show that the transition from torus to SNA isduantities show the largd behavior

smooth with no particular signature ik. FL(N)~N~5 (11)
3. The intermittency route [similarly for K(N)] while for the fractalized or HH SNAs,
Intermittent SNAs are morphologically quite distinct from the approach is exponentially fast,
those formed through other mechanisms. An example of the F. (N)~exp(— yN). (12)

transition to such SNAs is shown in Fig. 6. The behavior of

A as « is reduced throughy,=3.405808 806... at’=1  The exponent® andy depend strongly on the parameters
[Fig. 6(@)] is distinctive and may be contrasted with Figs.ande’. For the SNAs discussed above, we have calculated
4(a) and 5a). The torus which exists forr>«, and the in- F_(N) for large N [see Fig. 7d)] and obtain 8~0.2,
termittent SNA are depicted in Figs(t§ and &c), respec-  yuy~0.02, andy,~0.03.K(N) also has a similar slow fall
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FIG. 6. The transition from a period-1 torus to one-band SNA via the intermittent transition, along the'kne and at
a,;=3.405 808 806... (a) Behavior of A through the transition(b) plot of the period-1 torus at=3.405 809,(c) the intermittent SNA at
a=3.405 808,(d) the variance through the transition.

off at largeN for the intermittent SNAK(N)~N~#" with ~ at fixede’ which can be compared with the probability den-
B’ ~0.55, while for the other SNAs, the decay is slow for Sity [23,25,26 in the SNA burst phasiFig. 8b)]. Both these
smallN but exponential for largé\. guantities have the same expongnt 0.37=0.03 ate’ =1.
Although other SNAs also show intermittencylike dynamical
behavior, the scaling form Edq14) obtainsonly for the in-
B. Scaling at the intermittency transition termittent SNAs, thus providing a means of distinguishing
The intermittency transition from a torus to a SNA is these from HH or fractalized SNAs.
characterized by scaling behavior for the dynamics, similar
to corresponding behavior in the unforced c&2d]. The _
“laminar” phase in this case is the torus, while the “cha- C. Merging of SNAs
otic” phase is the nonchaotic attractor. In order to obtain the As the parametera ande are varied, the attractors of the
distribution time in these phases, we coevolve two trajectoguasiperiodically driven system undergo transformation in a
ries with identical &, o) and €', with different a: since  manner which is analogous to the undriven chaotic system.
the angular coordinate remains identical, the distance beSimilar to reverse bifurcations or band merging in 1D maps,
tween the trajectories is simply the difference in thes. We  n-band SNAs transform ta/2-band SNAs. Through such a
calculate the time between bursts and fit to the scaling forntransition, when the dynamics remains nonchaotic and
y strange,A is a good order parameter. Sosnovtsetal.
~(ac—a)” " (13)  [11], who discovered an example of this transition in the
driven Henon and circle maps, demonstrated the merging by

The numerical value obtained for the attractor witmearq;, examining the phase portait. . L
and €' =1 is §=0.52+0.03 ande’ =0.65 is §=0.5+0.03 Given the fairly narrow range over which SNAs exist in

. . - . . tem, this transition also occurs in a restricted range.
[see Fig. &)]. This suggests that the intermittency is type |. &MY SyStem,
The Lyapunov exponent itself shows the scaling form"Ve fmd' that the SNA bands that are formed by the HH
[18] mechanism typically do not merge at negative Lyapunov ex-

ponent, but only do so at higher driving, when they collide in
the chaotic region as at a proper analog of the band-merging
A=A~ (ac—a)* (14 crisis [2]. However, the variation ofA at such transitions
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three different SNAs ir{a), (b), and(c) showing exponential decay in the first two cases, and a power-law decay for the intermittent SNA.
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FIG. 8. Scaling behavior on the intermittent SNAA) Plot of the
average time between bursts va.Ca) at €'=1 (O) and at

does not follow a uniform pattern as in the unforced case
[23,24].

Those SNAs which are formed via fractalization may
merge at negativé\. Figure 9a) shows the variation ofA
for such an example of a two-band SNA merging to a one-
band SNA. The Lyapunov exponeti¢creasesvith increas-
ing nonlinearity. The distribution for short time Lyapunov
exponents before and after the SNA band-merging crisis con-
firms that the distribution shifts to lowex; see Fig. ).
Both these figures indicate that the chaoticity of the system
[measured either through locak ) or global (A) indica-
tors] becomes significantly lower after merging crisis. This
band merging is different from the unforced cd44,24
where A generally increases as number of bands decreases
with increasing nonlinearity.

D. The effect of noise

An important consideration in the study of SNAs is their
robustness. Given the somewhat unusual properties of such
attractors and the fact that they exist over small regions in
parameter space, it is natural to examine the effect of fluc-
tuations. This is of particular relevance with respect to the
experimental observation of SNA44,16. The effect of
noise in the logistic map has been extensively stufiz«d,
and it is known that noise generally lowers the threshold for
chaos—systems with additive noise have a larger Lyapunov

€' =0.65 (). (b) The probability density§g) in the burst phase €xponent for smaller nonlinearity. Furthermore, transitions
(O) andA (O) vs (a,— @) ate’ =1. The measured exponents are and bifurcations get “blurred” in the presence of fluctua-

n~0.37.

tions.
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FIG. 9. (a) Variation of A at band-merging bifurcation in SNA
for two-band SNAs to a one-band SNA aloeg 0.05. (b) Distri- FIG. 10. The shift inA with additive noise near the threshold
bution of local Lyapunov exponentB(100)\), across the merging for the transition from SNA to chaos for the cases(@f HH, (b)
transition in(a) which takes place at.~3.387 439. fractalization, forp=0 (solid line), 10 2 (dashed lingand (c) in-

termittent SNAs,p=0 (solid ling), p=10"5 (dashedl All quanti-
To examine some of these effects, we have studied thities are estimated from a set of 50 samples of tilie steps.
system through the introduction of additive noise in the dy-
namics, for example as of scaling in the presence of noise is small, and the intermit-
tency exponent varies; we have found that the numerical
Xn+1=a[1+ € cog2mdh,) IXn(1—Xp) +pén, (15  value of @ [see Eq(13)] is 0.56+0.04 ate’ =1.

wherep is the noise amplitude and the random varialdg
is & correlated in time. As may have been anticipated, the
addition of noise “smears out” tori, and the threshold values In this paper we have described the phenomenology of
for bifurcations typically shift to lower at fixed e. strange nonchaotic dynamics in a prototypical example,
The actual transitions—now from noisy tori to noisy namely, the quasiperiodically driven logistic map. There are
SNAs—survive, and examples of this are shown in Fig. 1&hree different mechanisms through which SNAs can be cre-
for fractalized, HH, and intermittent SNAs, wherk is  ated in this system; these routes to SNAs have their analogs
shown as a function af with and without noise. Since as a in the different scenarios for the onset of chaos in dissipative
function of decreasing the intermittent SNA is born out of dynamical systemgl7].
a torus, the effect of noise is to increase the parameter value We obtain a “phase diagram” for the system, delineating
at which this SNA is create@elative to thep=0 cas¢while  the different asymptotic behaviors that are possible as a func-
the opposite effect, namely, a reduction of parameter valuéon of the parameters, namelysfrequency torus attractors,
for the transition to HH and fractalized SNAs, is seen. Thesetrange chaotic attractors, and SNAs. There are two major
behaviors are typical: we have verified that SNAs in relatecchaotic regions with different characteristics, separated from
systems such as the quasiperiodically forced ring anagbHe each other by a region of quasiperiodic and strange noncha-
maps behave similarly. otic behavior. As a function of parameters, therefore, the
Upon addition of noise, the global structures of the differ-system can show several transitions in the dynamics and sev-
ent types of SNAs remain similar—the qualitative behavioreral of these have been studied.
such as scaling, band merging, etc. are retained—although To distinguish among the different mechanisms through
the numerical values of constants and exponents change. Thdhich SNAs are born, we examine not only the manner in
degree of robustness varies with nonlinearity, though: fomhich A changes as a function of parameters, but also the
instance, at’ =1, the intermittent transition survives for ad- variances. These indices together give a clear indication of
ditive noise of amplitude up tp=10"8, while at lowere’ the transition from quasiperiodic to strange nonchaotic dy-
the transition is robust to even larger~10 *. The region namics. We also examine the distribution of local Lyapunov

IV. SUMMARY
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exponentsP(N,\) and find that on different SNAs, the frac- namely, the coalescence of different branches of a multiband
tion of positive exponent§ . (N) or its moment, the local attractor. At this transition, in contrast to analogous behavior
KS entropy, decay in different manners depending on thén the logistic magd 23], A, which remains negative through-
type of SNA that is formed. out, decreases. A clear understanding of why this is so is not
In addition to three routes that have been decribed previyyailable at present.
ously[5,6,8, we identify a new mechanism for the creation | summary, our primary emphasis has been on the use of
of SNAs. ThesentermittentSNAs [18] are atypical in that 5 pumber of Lyapunov measures—the largest nontrivial
they are created at the quasiperiodic analog of a saddle-nod§apunov exponent, its fluctuations, the distribution of
bifurcation[17], and the signature of the transition is a dis- finjte-time Lyapunov exponents, and partial moments of this
continuous change both iN as well as ino. The chaotic gistribution—to characterize the different types of transitions
component on the intermittent SNA is long lived, giving rise o strange nonchaotic attractors that arise in the forced logis-
to long chaotic transients: this shows up as a slowly decayingc map.
positive tail inP(N,\), and a resulting power-law decay for  For hyperbolic systems, the theory for the Lyapunov ex-
F.(N) or K(N). (On other SNAs, in contrast, these quanti- ponent and for Lyapunov measures is well develofd.
ties decay exponentiallyWe further characterize intermit- For SNAs, the situation is in a less satisfactory state, and our
tent SNAs by establishing the scaling behavior for residenceyork represents initial efforts towards understanding the
times in the different phases and find that the qualitativq)henomeno|ogy of quasiperiodically driven systems. For a
picture is in accord with type-I intermittendyL7]. This be-  number of bifurcations in such systems in general, it is clear
havior perSiStS in the presence of additive random noise. that the |argest Lyapunov exponent is a good order param-
We have described the intermittent SNA in detail andeter. It is likely that the considerable formalism for such
shown that both in its creation as well as in its morphology ittransitions that has been developed for chaotic strange attrac-
is distinct from other SNAs, and bears some relation, intors [17,2ﬂ can be app“ed in |arge part to the strange non-
terms of the phase diagram, to a reentrant phésethe  chaotic regime, but the extent to which the theory carries

higher dimensional system of the forced circle niap] for  over is an aspect that remains to be explored in future work.
which the phase diagram has been obtained, the intermittent

SNA occurs in an analogus regiorn the vicinity of such
E\t(gt:;(ci(())rrs, a number of dynamical quantities show scaling ACKNOWLEDGMENT
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