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Strange nonchaotic attractors in the quasiperiodically forced logistic map

Awadhesh Prasad, Vishal Mehra, and Ramakrishna Ramaswamy
School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India

~Received 4 September 1997!

Different mechanisms for the creation of strange nonchaotic dynamics in the quasiperiodically forced logis-
tic map are studied. These routes to strange nonchaos are characterized through the behavior of the largest
nontrivial Lyapunov exponent, as well as through the characteristic distributions of finite-time Lyapunov
exponents. Strange nonchaotic attractors can be created at a saddle-node bifurcation when the dynamics shows
type-I intermittency; thisintermittent transition, which is studied in detail, is characterized through scaling
exponents. Band-merging crises through which dynamics remains nonchaotic are also studied, and correspon-
dence is made with analogous behavior in the unforced logistic map. Robustness of these phenomena with
respect to additive noise is investigated.@S1063-651X~98!10302-1#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Of the diverse structures that are found in nonlinear
namical systems, strange nonchaotic attractors~SNAs! are
among the more exotic. These were described by Greb
et al. @1# in the context of quasiperiodically forced system
and are characterized by having a geometrically stra
structure~usually a fractal, which is everywhere single va
ued but piecewise nondifferentiable! with ‘‘nonchaotic’’ dy-
namics: the largest nontrivial Lyapunov exponentL is nega-
tive, and nearby orbits do not diverge from each oth
exponentially. Since they were described@1#, a number of
characteristics of SNAs have been studied theoretically@2–
13# and experimentally@14–16#.

Strange nonchaotic dynamics usually occurs in the vic
ity of strange chaotic behavior and periodic or quasiperio
~nonstrange, nonchaotic! behavior. The different mecha
nisms through which SNAs are created, either from regu
or from chaotic motion, and the mechanisms through wh
they disappear, either into regular or chaotic motion—
birth and death of strange nonchaotic attractors, so
speak—is a topic of considerable current interest.

In this paper we address this question in the context o
typical dynamical system with quasiperiodic forcing and d
cuss a number of transitions in such systems. These incl
apart from the transition from quasiperiodic or chaotic m
tion to strange nonchaotic dynamics, transitions between
ferent SNAs.

We study the quasiperiodically forced logistic map whi
is given by the equations

xn115a@11e cos~2pfn!#xn~12xn!,

fn115fn1v ~mod 1!,

wherexPR1, fPS1, v5(A521)/2 is the irrational driving
frequency, ande represents the forcing amplitude. With qu
siperiodic driving the periodic attractors of the logistic m
become quasiperiodic attractors, and following the stand
notation @5#, we denote a torus attractor of periodn in
R13S1 asn-T.

Four mechanisms or scenarios for the creation of SNA
quasiperiodically driven systems have been advanced. In
571063-651X/98/57~2!/1576~9!/$15.00
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absence of quasiperiodic forcing, the corresponding syst
show the by now standard scenarios for the route to cha
or aperiodic behavior, including quasiperiodicity, perio
doubling and tangent bifurcations, intermittency, crises, a
band-merging or reverse bifurcations@17#. There are paral-
lels to several of these in the different routes to SNAs.

~1! Heagy and Hammel@5# identified the birth of a SNA
with the collision between a period-doubled torus and
unstable parent. This mechanism requires that a per
doubling bifurcation occur, after which the stable tor
attractor gets progressively more ‘‘wrinkled’’ as the p
rameters in the system change, i.e.,x(f) becomes more
and more oscillatory. Following a collision with the un
stable parent torus, at an analog of the attractor-merg
crisis that occurs in chaotic systems@2#, the SNA is
born. L remains negative throughout the collision pr
cess. This mechanism, which we denote by HH in
remainder of this paper, has been seen both fo
period-2 torus as well as for the period-4 torus; the q
siperiodic forcing drives the system into chaos well b
fore the infinite sequences of period doubling can occ

~2! The ‘‘fractalization’’ route for the creation of SNAs ha
been described by Nishikawa and Kaneko@6,7#. A torus
gets increasingly wrinkled and transforms into a SN
without any interaction with a nearby unstable period
orbit. This route to SNA~and eventually to chaos! has
also been observed in higher-dimensional systems@11#.

~3! In the intermittency scenario for the formation of SNA
@18#, as a function of driving parameter a strange attr
tor disappears and is eventually replaced by a o
frequency torus through an analog of the saddle-n
bifurcation. In the vicinity of this crisislike phenomeno
@2# the attractor is strange and nonchaotic. We ha
shown that the dynamics at this transition shows sca
behavior characteristic of type-I intermittency@13#, and
the signature of the transition is an abrupt and charac
istic change in the variation ofL. The intermittent route
is a general one which can be found in other systems
well @19#.
1576 © 1998 The American Physical Society
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57 1577STRANGE NONCHAOTIC ATTRACTORS IN THE . . .
~4! Yalçinkaya and Lai@8# identify the birth of SNAs with a
blowout bifurcation@9#, when a torus loses transvers
stability. The Lyapunov exponent also has a characte
tic dependence on parameter in this case.

SNAs can be quantitatively characterized by a variety
methods, including the estimation of the Lyapunov exp
nents and the fractal dimension@1,3,20#, spectral properties
@3,7#, and examination of the time series@11,21#. The geo-
metric strangeness of the attractor can be measured thr
indices such as the phase-sensitivity exponent@10#, while the
chaoticity properties can be studied by examining the fin
time Lyapunov exponents@10,18#.

A number of transitions in this system are investiga
wherein three of the above mechanisms for the creation
SNAs are known to be operative~blowout bifurcations can-
not occur!, notably the processes whereby SNAs are crea
from torus (T) attractors,

•••nT↔n band SNAs↔•••, ~2!

2nT↔2n21 band SNAs↔•••, ~3!

or others, such as from SNA to chaotic attractors (C) or
from a k-band SNA to ak/2-band SNA,

•••n band SNAs↔n band C↔••• , ~4!

•••↔k band SNAs↔k/2 band SNAs↔k/2 bandC↔••• .
~5!

The latter class of bifurcations~for k a power of 2! is studied
here through analysis of the Lyapunov exponents and t
distributions. We also explore the effect of additive noise

This paper is organized as follows. In Sec. II, we descr
the ‘‘phase diagram’’ for the forced logistic map: the regio
corresponding to the different dynamical behavior that obt
are delineated as a function of parameters. This phase
gram is canonical for dynamical systems such as Eq.~1!,
namely, unimodal maps that are parametrically driven,
generalizes the usual bifurcation diagram that is obtaine
the absence of forcing. Transitions to SNAs and the cha
teristic behavior of the Lyapunov exponents are discusse
Sec. III, where we also discuss other transformations that
undergone by SNAs, such as the analog of band merg
The creation of SNAs is often accompanied by intermitt
dynamics, and this can be quantitatively described in te
of scaling exponents at these transitions. These results
also given in Sec. III, where we discuss, in addition, t
effects of additive noise. This is followed by a summary
Sec. IV.

II. FORCED LOGISTIC MAP: PHASE DIAGRAM

The quasiperiodically forced logistic map@5# is particu-
larly convenient for study since the phenomenology
smoothly related to that of the logistic map in the limit
e→0. Sincex andf are uncoupled in this limit, the period
k orbits of the logistic map are converted intok-frequency
tori, and the chaotic attractors in the logistic map appea
chaotic band attractors of the two-dimensional map, Eq.~1!.

The region of interest in the phase space is 0<x<1,
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0<f<1. For eÞ0, it is clear that motion will remain
bounded in this region so long asa@11e cos(2pfn)#
P@0,4#. Thus for anya<4, the largest value ofe allowed is
4/a21. We therefore redefine the driving parameter
e85e/(4/a21) and study the system for 0<e8<1.

Figure 1 is a phase diagram@18# of the system as a func
tion of a ande8. ~The regimea<2 is featureless and unin
teresting.! The different possible dynamical behavior—
periodic, strange nonchaotic, and chaotic attracto
corresponding to the symbolsP, S and C in the phase
diagram—are characterized through the largest nonz
Lyapunov exponent,

FIG. 1. ~a! Phase diagram for the forced logistic map~sche-
matic!. The rescaled parametere8 is defined ase85e/(4/a21). T
andC correspond to torus and chaotic attractors. The shaded re
along the boundary ofT and C corresponds to SNA~markedS!.
The boundaries separating the different regions are convoluted,
regions of SNA and chaotic attractors are interwoven in a com
cated manner. The dashed curve marks the locus of the ‘‘su
stable’’ orbit ~see the text!. The region of periodic attractors can b
further demarcated into period-1, -2, and -4 tori as shown~1T, 2T,
and 4T!. W denotes the window of periodic behavior correspond
to the period-3 orbit of the logistic map. This is shown enlarged
Fig. 1~b!. Intermittent SNAs are found on the edge of theC2 region
marked I, while the left boundary ofC2 has only fractalized SNAs.
Along the boundary ofC1, both fractalized and HH SNAs can b
found. ~b! An enlargement of the windowW indicated in~a!. This
small window shows periodic tori of period 3,6, . . . and their
SNAs that are created either through the Heagy-Hammel proce
fractalization. As may be expected, other similar windows can
seen upon further enlargement.
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1578 57PRASAD, MEHRA, AND RAMASWAMY
L5 lim
N→`

1

N(
i 51

N

lnua@11e cos~2pf i !#~122xi !u. ~6!

We calculateL typically from 106 iterations of the map
~after removing transients for 105 iterations! which is suffi-
cient to converge the results to within 1024. To obtain Fig.
1, L has been calculated in a 1003 100 grid, and the bound
aries of the chaotic regions are determined from theL50
contour.

The main interesting feature of this phase diagram is
presence of two separate chaotic regimes,C1 and C2. The
C1 region is the continuation of the chaotic regime in t
logistic map~this appears, fore50 at the end of the period
doubling cascade, ata53.5699...). The superstable orbit
which exists ate50,a52 continues~slightly distorted! for
nonzeroe8 along the locuse8'2(122/a)/5(4/a21); this
line @the dotted curve in Fig. 1~a!# separatesC1 andC2. The
latter chaotic region is one of low nonlinearity and larg
amplitude forcing. The two types of chaotic attractors th
occur in these two regions are qualitatively quite differen
see Figs. 2~a! and 2~b!.

SNAs are found in the vicinity of the boundaries of th
chaotic regions, whereL,0. The different mechanism
through which they are formed in different regions are d
cussed below.

Along the left edge of the regionC2, for 0.59<e8<1, the
route to SNA is through fractalization. This region lies to t
left of the curve of ‘‘superstable one-torus’’ points@the
dashed line in Fig. 1~a!#, namely, well before torus doublin

FIG. 2. Typical chaotic attractors in the two regions~a! C1, for
a53.6, e850.5, and~b! C2 at a53, e851.
e

-
t

-

occurs. For fixede8, SNAs are created through fractalizatio
in an interval ina as indicated in the phase diagram.

Along the right edge ofC2, SNAs are born throughinter-
mittency. Consider a superstable one-torus. In the regi
0.59<e8<1, asa is decreased, holdinge8 fixed, a saddle-
node bifurcation takes place and the torus becomes a S
eventually becoming a chaotic attractor. This process occ
over a somewhat narrow range of parameters as compar
the other routes discussed in Sec. I.

Along the left edge ofC1 SNAs are created either via th
HH mechanism, or through fractalization. The phenomen
of truncation or interruption of the period-doubling casca
resulting from the quasiperiodic driving was noted
Kaneko@22#, who also showed that there was a power-la
scaling between the number of doublings and the driv
amplitude. The requirement, in the Heagy-Hammel mec
nism, that a period-doubled torus collide with its unstab
parent, is a stringent one, and this is achieved only for
lected parameter intervals. Fractalization is also a lik
cause for the interruption of period doubling@22#. The actual
mechanism through which a SNA is created is easily ide
fied from the morphology of the attractor: ak-torus gives rise
to ak/2-band SNA in the Heagy-Hammel mechanism, and
a k-band SNA through fractalization. At low forcing ampl
tude the fractalization is found to be dominant while the H
mechanism is more common at higher forcing. In particu
we do not find any fractalization event abovee8;0.7.

The regions of SNA are quite complicated. The boun
aries between chaotic attractors and SNAs are convolu
with regions of torus attractors interspersed among the
gions of SNAs. Thus there are several transformations
the attractors of this system undergo apart from the birth
death mechanisms, namely, the transition from torus to S
or SNA to chaos. Indeed, along a line of constante or con-
stante8, L is highly nonmonotonic and reveals a number
bifurcations. An example is shown in Fig. 3, for consta
e50.05. Clearly, there are transitions fromT→SNA→chaos
→SNA→chaos . . . , finally terminating in theC1 chaotic
region.

FIG. 3. Variation ofL as a function ofa for fixed e50.05.
Note the highly oscillatory structure indicative of several transitio
in the system.



m
s
d

ec

na
s

th
rg

d
iza

si
ad
ap
n
b

th
on
iv
t

th

ics
rs

ys
e
,
5

en
n

d-
n
t
t is

a

ll

e
ese
e

m-

A
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Within the SNA region, there are transitions fro
2n-band SNAs to 2n21-band SNAs. At these transition
again there are distinctive and unusual signatures in the
pendence ofL, as well as in the distribution of finite-time
Lyapunov exponents. This is discussed in the following s
tion.

Compared to the system ate50, for nonzeroe it is usu-
ally possible to observe regular motion only onn-T with
n51,2,3,4,6,8,16. Highern-frequency tori are surely
present, but the regions where they occur are extremely
row. The period-3 window of the logistic map extends a
narrow region of stability wherein one can locate 3-T, 6-T,
and the associated SNAs, which are formed through
same general mechanisms as outlined in Sec. I. An enla
ment of this region of the phase diagram@marked byW in
Fig. 1~a!# is shown in Fig. 1~b!. The three-band and six-ban
SNAs that occur appear to be formed through the fractal
tion or Heagy-Hammel route.

This qualitative picture appears to be valid for all qua
periodically forced unimodal maps. We have studied the
ditively forced logistic map, as well as the forced sine m
and found a similar phase diagram. For higher-dimensio
systems, the picture gets somewhat more complicated,
the essential qualitative features carry over, much in
same manner as the bifurcation diagram for one-dimensi
~1D! maps generalizes for higher-dimensional dissipat
chaotic systems. This system is also not very sensitive to
numerical value of the irrational driving frequencyv: quali-
tatively similar phase diagrams have been obtained for o
v ’s.

III. RESULTS AND DISCUSSION

In this section we study the variation of the dynam
through several transitions in the system as the parametea
and e are varied. In addition to the Lyapunov exponentL
itself, we also examine theN-step Lyapunov exponents,lN ,
namely,

lN5
1

N(
i 51

N

lnua@11e cos~2pf i !#~122xi !u, ~7!

their variances, and the distribution

P~N,l!dl5~probability that lN lies betweenl and

l1dl!. ~8!

This is of great relevance when studying the stability of s
tems where a small change in control parameter gives ris
drastic change in dynamical behavior. In our calculationsL
and its variance are typically computed from a sample of
estimations of step lengthN5105.

The SNA→chaos route, which has been studied ext
sively and where it is known that the Lyapunov expone
varies linearly through the transition@12#, will not be con-
sidered here.
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A. From tori to SNAs

1. The Heagy-Hammel mechanism

In the HH mechanism@5#, a period-2n torus attractor gets
wrinkled and upon collision with the parent unstable perio
2n21 torus, a 2n21-band SNA is formed. This phenomeno
is similar ~in some sense! to the band-merging crisis tha
occurs in unforced systems, where the Lyapunov exponen
known to have a discontinuous slope@23#. In contrast, in
Ref. @5# the transition to SNA appeared to be smooth as
function of the parameter~see Figs. 2 and 10 in@5#!.

We examine this behavior in some detail in Fig. 4~a!,
where for e850.3 the crisis takes place ataHH
53.487 793... . When examined in a sufficiently sma
neighborhood ofac , the transition is clearly revealed byL:
on the torus,L varies smoothly but in the SNA phase th
variation is rather irregular and the crossover between th
two behaviors is abrupt. It is also possible to identify th
transition point from the examination of the variance inL,
shown in Fig. 4~b!: in the torus region,a<aHH , the fluctua-
tions inL are small, while fora.aHH , the variance is large
and depends irregularly on the function of the control para
eter. Unlike the case of band-merging or widening crises@23#

FIG. 4. The transition from a period-2 torus to one-band SN
through the Heagy-Hammel mechanism along the linee850.3 and
at aHH53.487 793... .~a! Behavior of L through the transition,
and ~b! the variance.
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1580 57PRASAD, MEHRA, AND RAMASWAMY
there is no distinctive signature in the variation of t
Lyapunov exponent itself~except for a certain irregularity in
the SNA phase!.

2. The fractalization mechanism

During fractalization, a period-k torus attractor gets
wrinkled and eventually forms ak-band SNA@12#. There is
no apparent interaction with unstable periodic orbits in c
trast to the HH case, and there are no analogs of any cr
like behavior. The variation of theL and its variance at suc
a transition are shown in Figs. 5~a! and 5~b!, respectively, as
a changes throughaF52.6526 . . . ate851. The behavior
of variance in Fig. 5~b! is similar to that of the HH case@Fig.
4~b!#, except in the magnitude of the fluctuations. These
ures also show that the transition from torus to SNA
smooth with no particular signature inL.

3. The intermittency route

Intermittent SNAs are morphologically quite distinct fro
those formed through other mechanisms. An example of
transition to such SNAs is shown in Fig. 6. The behavior
L as a is reduced througha I53.405 808 806... ate851
@Fig. 6~a!# is distinctive and may be contrasted with Fig
4~a! and 5~a!. The torus which exists fora.a I and the in-
termittent SNA are depicted in Figs. 6~b! and 6~c!, respec-

FIG. 5. The transition from a period-1 torus to one-band SN
via the fractalization route along the linee851 and at
aF52.6526... .~a! Behavior ofL through the transition, and~b!
the variance.
-
is-

-

e
f

.

tively. On the intermittent SNA, most points remain near t
parent torus, with sporadic large deviations. On fractaliz
SNAs points on the attractor stay close to the parent fra
torus ~Fig. 1 of Ref. @7#!, while on HH SNAs, points are
distributed within the entire region enclosed by the wrinkl
bounding tori~see Fig. 1 of Ref.@5#!. The other characteristic
behavior can be extracted from Fig. 6~d! where we plot the
variance: this changes abruptly at the transition, wher
saddle-node bifurcation occurs showing the characteri
signature of the intermittency route to SNAs.

4. Finite-time Lyapunov exponents

As is well known, whileL is negative on a SNA, for
short times, the local Lyapunov exponent can be posit
One of the characteristics of the SNAs born through differ
mechanisms is the difference in the distribution of finite-tim
exponents, namely,P(N,l). In the limit of large N, it is
clear that this distribution will collapse to ad function,
limN→`P(N,l)→d(L2l). The deviations from—and the
approach to—the limit can be very different for SNAs cr
ated through different mechanisms.

Shown in Figs. 7~a!–7~c! are the distributions for
P(50,l) across the three transitions discussed above, nam
on the tori and corresponding SNAs. A common feature
all three cases is thatP(N,l) is strongly peaked aboutL
when the attractor is a torus, but on the SNA, the distribut
picks up a tail which extends into thel.0 region. This tail
directly correlates with the enhanced fluctuation inL on
SNAs @see Fig. 4~b!, 5~b!, or 6~d!#. On the fractalized SNA,
the distribution shifts continuously to largerL, but the shape
remains the same fora^a I and a&a I , while on the HH or
intermittent SNA, the actual shapes of the distribution on
torus and the SNA are very different.

One remarkable feature of intermittent SNAs is that t
positive tail in the distribution decays very slowly: even f
N as large as 104, it does not completely disappear@18#. In
order to quantify this, we define the fraction of positive loc
Lyapunov exponents as

F1~N!5E
0

`

P~N,l!dl, ~9!

and similarly, the first moment, namely, a local Kolmogoro
Sinai ~KS! entropy,

K~N!5E
0

`

lP~N,l!dl. ~10!

Clearly, limN→`F1(N)→0 and limN→`K(N)→0. Empiri-
cally we have found that on the intermittent SNA, the
quantities show the largeN behavior

F1~N!;N2b ~11!

@similarly for K(N)] while for the fractalized or HH SNAs,
the approach is exponentially fast,

F1~N!;exp~2gN!. ~12!

The exponentsb andg depend strongly on the parametersa
and e8. For the SNAs discussed above, we have calcula
F1(N) for large N @see Fig. 7~d!# and obtain b'0.2,
gHH'0.02, andg I'0.03.K(N) also has a similar slow fal
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FIG. 6. The transition from a period-1 torus to one-band SNA via the intermittent transition, along the linee851 and at
a I53.405 808 806... .~a! Behavior ofL through the transition,~b! plot of the period-1 torus ata53.405 809,~c! the intermittent SNA at
a53.405 808,~d! the variance through the transition.
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off at largeN for the intermittent SNAK(N);N2b8 with
b8'0.55, while for the other SNAs, the decay is slow f
small N but exponential for largeN.

B. Scaling at the intermittency transition

The intermittency transition from a torus to a SNA
characterized by scaling behavior for the dynamics, sim
to corresponding behavior in the unforced case@24#. The
‘‘laminar’’ phase in this case is the torus, while the ‘‘ch
otic’’ phase is the nonchaotic attractor. In order to obtain
distribution time in these phases, we coevolve two trajec
ries with identical (x0 ,f0) and e8, with different a: since
the angular coordinate remains identical, the distance
tween the trajectories is simply the difference in thexn’s. We
calculate the time between bursts and fit to the scaling fo

t;~ac2a!2u. ~13!

The numerical value obtained for the attractor witha neara I
and e851 is u50.5260.03 ande850.65 is u50.560.03
@see Fig. 8~a!#. This suggests that the intermittency is type

The Lyapunov exponent itself shows the scaling fo
@18#

L2Lc;~ac2a!m ~14!
r

e
-

e-

m

.

at fixede8 which can be compared with the probability de
sity @23,25,26# in the SNA burst phase@Fig. 8~b!#. Both these
quantities have the same exponentm50.3760.03 ate851.
Although other SNAs also show intermittencylike dynamic
behavior, the scaling form Eq.~14! obtainsonly for the in-
termittent SNAs, thus providing a means of distinguishi
these from HH or fractalized SNAs.

C. Merging of SNAs

As the parametersa ande are varied, the attractors of th
quasiperiodically driven system undergo transformation i
manner which is analogous to the undriven chaotic syst
Similar to reverse bifurcations or band merging in 1D ma
n-band SNAs transform ton/2-band SNAs. Through such
transition, when the dynamics remains nonchaotic a
strange,L is a good order parameter. Sosnovtsevaet al.
@11#, who discovered an example of this transition in t
driven Hénon and circle maps, demonstrated the merging
examining the phase portait.

Given the fairly narrow range over which SNAs exist
any system, this transition also occurs in a restricted ran
We find that the SNA bands that are formed by the H
mechanism typically do not merge at negative Lyapunov
ponent, but only do so at higher driving, when they collide
the chaotic region as at a proper analog of the band-mer
crisis @2#. However, the variation ofL at such transitions
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FIG. 7. Distribution of finite-time Lyapunov exponents across the three transitions. Shown are the distributions ofP(50,l) before and
after the transitions, namely, on the tori and on the SNA.~a! Along the HH route, on the torus ata53.4874 (h) and on the SNA at
a53.488 (n) for e850.3.~b! Along the fractalization route, on the torus ata52.63 (h) and the SNA ata52.66 (n) for e851. ~c! Along
the intermittency route, on the torus ata53.405 81 (h) and on the SNA ata53.405 805 6 (n! for e851. ~d! Variation ofF1(N) for the
three different SNAs in~a!, ~b!, and~c! showing exponential decay in the first two cases, and a power-law decay for the intermittent
The respective symbols areh, s, and,.
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FIG. 8. Scaling behavior on the intermittent SNA.~a! Plot of the
average time between bursts vs (ac2a) at e851 (s) and at
e850.65 (h). ~b! The probability density (pB) in the burst phase
(s) andL (h) vs (ac2a) at e851. The measured exponents a
m'0.37.
does not follow a uniform pattern as in the unforced ca
@23,24#.

Those SNAs which are formed via fractalization m
merge at negativeL. Figure 9~a! shows the variation ofL
for such an example of a two-band SNA merging to a o
band SNA. The Lyapunov exponentdecreaseswith increas-
ing nonlinearity. The distribution for short time Lyapuno
exponents before and after the SNA band-merging crisis c
firms that the distribution shifts to lowerl; see Fig. 9~b!.
Both these figures indicate that the chaoticity of the syst
@measured either through local (lN) or global (L) indica-
tors# becomes significantly lower after merging crisis. Th
band merging is different from the unforced case@17,24#
whereL generally increases as number of bands decre
with increasing nonlinearity.

D. The effect of noise

An important consideration in the study of SNAs is the
robustness. Given the somewhat unusual properties of s
attractors and the fact that they exist over small regions
parameter space, it is natural to examine the effect of fl
tuations. This is of particular relevance with respect to
experimental observation of SNAs@14,16#. The effect of
noise in the logistic map has been extensively studied@24#,
and it is known that noise generally lowers the threshold
chaos—systems with additive noise have a larger Lyapu
exponent for smaller nonlinearity. Furthermore, transitio
and bifurcations get ‘‘blurred’’ in the presence of fluctu
tions.
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To examine some of these effects, we have studied
system through the introduction of additive noise in the d
namics, for example as

xn115a@11e cos~2pfn!#xn~12xn!1rjn , ~15!

wherer is the noise amplitude and the random variable$j%
is d correlated in time. As may have been anticipated,
addition of noise ‘‘smears out’’ tori, and the threshold valu
for bifurcations typically shift to lowera at fixede.

The actual transitions—now from noisy tori to nois
SNAs—survive, and examples of this are shown in Fig.
for fractalized, HH, and intermittent SNAs, whereL is
shown as a function ofa with and without noise. Since as
function of decreasinga the intermittent SNA is born out o
a torus, the effect of noise is to increase the parameter v
at which this SNA is created~relative to ther50 case! while
the opposite effect, namely, a reduction of parameter va
for the transition to HH and fractalized SNAs, is seen. Th
behaviors are typical: we have verified that SNAs in rela
systems such as the quasiperiodically forced ring and He´non
maps behave similarly.

Upon addition of noise, the global structures of the diffe
ent types of SNAs remain similar—the qualitative behav
such as scaling, band merging, etc. are retained—altho
the numerical values of constants and exponents change
degree of robustness varies with nonlinearity, though:
instance, ate851, the intermittent transition survives for ad
ditive noise of amplitude up tor51026, while at lowere8
the transition is robust to even largerr '1024. The region

FIG. 9. ~a! Variation of L at band-merging bifurcation in SNA
for two-band SNAs to a one-band SNA alonge50.05. ~b! Distri-
bution of local Lyapunov exponents,P(100,l), across the merging
transition in~a! which takes place atac'3.387 439.
is
-

e
s

0

ue

e
e
d

-
r
gh
he
r

of scaling in the presence of noise is small, and the interm
tency exponent varies; we have found that the numer
value ofu @see Eq.~13!# is 0.5660.04 ate851.

IV. SUMMARY

In this paper we have described the phenomenology
strange nonchaotic dynamics in a prototypical examp
namely, the quasiperiodically driven logistic map. There
three different mechanisms through which SNAs can be c
ated in this system; these routes to SNAs have their ana
in the different scenarios for the onset of chaos in dissipa
dynamical systems@17#.

We obtain a ‘‘phase diagram’’ for the system, delineati
the different asymptotic behaviors that are possible as a fu
tion of the parameters, namely,n-frequency torus attractors
strange chaotic attractors, and SNAs. There are two m
chaotic regions with different characteristics, separated fr
each other by a region of quasiperiodic and strange non
otic behavior. As a function of parameters, therefore,
system can show several transitions in the dynamics and
eral of these have been studied.

To distinguish among the different mechanisms throu
which SNAs are born, we examine not only the manner
which L changes as a function of parameters, but also
variances. These indices together give a clear indication
the transition from quasiperiodic to strange nonchaotic
namics. We also examine the distribution of local Lyapun

FIG. 10. The shift inL with additive noise near the threshol
for the transition from SNA to chaos for the cases of~a! HH, ~b!
fractalization, forr50 ~solid line!, 1023 ~dashed line! and ~c! in-
termittent SNAs,r50 ~solid line!, r51025 ~dashed!. All quanti-
ties are estimated from a set of 50 samples of 105 time steps.
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exponents,P(N,l) and find that on different SNAs, the frac
tion of positive exponentsF1(N) or its moment, the loca
KS entropy, decay in different manners depending on
type of SNA that is formed.

In addition to three routes that have been decribed pr
ously @5,6,8#, we identify a new mechanism for the creatio
of SNAs. TheseintermittentSNAs @18# are atypical in that
they are created at the quasiperiodic analog of a saddle-
bifurcation @17#, and the signature of the transition is a d
continuous change both inL as well as ins. The chaotic
component on the intermittent SNA is long lived, giving ri
to long chaotic transients: this shows up as a slowly decay
positive tail inP(N,l), and a resulting power-law decay fo
F1(N) or K(N). ~On other SNAs, in contrast, these quan
ties decay exponentially.! We further characterize intermit
tent SNAs by establishing the scaling behavior for reside
times in the different phases and find that the qualitat
picture is in accord with type-I intermittency@17#. This be-
havior persists in the presence of additive random noise

We have described the intermittent SNA in detail a
shown that both in its creation as well as in its morpholog
is distinct from other SNAs, and bears some relation,
terms of the phase diagram, to a reentrant phase.~In the
higher dimensional system of the forced circle map@11# for
which the phase diagram has been obtained, the intermi
SNA occurs in an analogus region!. In the vicinity of such
attractors, a number of dynamical quantities show sca
behavior.

There are other bifurcation phenomena in such syste
and we have examined the case of SNA band merg
e
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namely, the coalescence of different branches of a multib
attractor. At this transition, in contrast to analogous behav
in the logistic map@23#, L, which remains negative through
out, decreases. A clear understanding of why this is so is
available at present.

In summary, our primary emphasis has been on the us
a number of Lyapunov measures—the largest nontriv
Lyapunov exponent, its fluctuations, the distribution
finite-time Lyapunov exponents, and partial moments of t
distribution—to characterize the different types of transitio
to strange nonchaotic attractors that arise in the forced lo
tic map.

For hyperbolic systems, the theory for the Lyapunov e
ponent and for Lyapunov measures is well developed@27#.
For SNAs, the situation is in a less satisfactory state, and
work represents initial efforts towards understanding
phenomenology of quasiperiodically driven systems. Fo
number of bifurcations in such systems in general, it is cl
that the largest Lyapunov exponent is a good order par
eter. It is likely that the considerable formalism for su
transitions that has been developed for chaotic strange at
tors @17,27# can be applied in large part to the strange no
chaotic regime, but the extent to which the theory carr
over is an aspect that remains to be explored in future wo
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